4
Applications

4.1 Ordinary Differential Equations

There is a strong connection between the implicit function theorem and the theory
of differential equations. This is true even from the historical point of view, for Pi-
card’s iterative proof of the existence theorem for ordinary differential equations
inspired Goursat to give an iterative proof of the implicit function theorem (see
Goursat [Go 03]). In the mid-twentieth century, John Nash pioneered the use of
a sophisticated form of the implicit function theorem in the study of partial dif-
ferential equations. We will discuss Nash’s work in Section 6.4. In this section,
we limit our attention to ordinary (rather than partial) differential equations be-
cause the technical details are then so much simpler. Our plan is first to show how
a theorem on the existence of solutions to ordinary differential equations can be
used to prove the implicit function theorem. Then we will go the other way by
using a form of the implicit function theorem to prove an existence theorem for
differential equations.

A typical existence theorem for ordinary differential equations is the following
fundamental result! (see for example, Hurewicz [Hu 64)):

Theorem 4.1.1 (Picard) If F(t, x). (t, x) € Rx RN, is continuous in the (N +1)-
dimensional region (to — a, to + a) x B(xo, r), then there exists a solution x(t)

YThis fundamental theorem is commonly known as Picard's existence and uniqueness theorem.
The classical proof uses a method that has come to be known as the Picard iteration technique. See
[Pi 93).
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of

AX _ pax). x(to) = xo @.1)
dt

defined over an interval (to — h, 1o + h).

Remark 4.1.2 The solution of (4.1) need not be unique if F is only continuous.
For example, the problem of finding x(¢) satisfying x’ = x2/3, x(0) = 0, has the
two solutions x = 0 and x(t) = (¢/ 3)3 To guarantee that the solution of (4.1) is
unique, it is sufficient to assume additionally that F satisfies a Lipschitz condition
as a function of x

We can give an alternative proof of the implicit function theorem as a corollary
of Theorem 4.1.1.

Theorem 4.1.3 Suppose that U C RV +H gndthat H : U — RisC! If
H (10, x0) = 0, (f0, x0) € R x RN, andthe N x N matrix

dH;
5-_(‘0, X0)
Xj i j=12....N

is nonsingular, then there exists an open interval (to—h, to+h) and a continuously
differentiable function ¢ : (to — h, 1o + h) — RN such that ¢(10) = xo and

H(t,¢(t)) =0.

Proof. We consider the case N = 1 in some detail. First, choose a, r > 0 so that
(to — a,to+a) x (xo —r,xo+r) € U and (3 H/3x)(t, x) is nonvanishing on
(to—a, to+a) x (xog—r, xo+r). Thendefine F : (to—a, to+a) x (xo—r, xo+r) =
R by setting

oH
F(t,x)=—- ?(t,x)/ Z_I:(t’x)' (4.2)

Since F is continuous, we can apply Theorem 4.1.1 to conclude that there exists
a solution of the problem

dx
I = F(t,x), x(t9) = x0

defined on an interval (1o — h, 1o 4+ h). We define ¢ : (to — h, 10 + h) — R by
setting

(1) = x(¢).
Note that

@(to) = xo 4.3)
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and

ey o 94X
$U) = —(0)=F(.x1)

oH oH
= - 7(1.45(1))/ a—x(1-¢(1))- 4.4)
By (4.3), we have H (19, ¢(t0)) = H (to, x0) = 0, and by (4.4), we have

d oH , _OH
27”(" é() = ﬁ(u é))+ (1) g(t. () =0.

Thus we have H(t, ¢ (1)) = O on the interval (1o — h, 19 + h).

Incase N > 1, we choose a, r > 0o that (19 —a, 19 +a) x B(xg,r) € U and
so that the N x N matrix

D.H = (_E)_H,_)
Ox; ij=1.2...N

is nonsingular on (o — a, 19 + a) x B(xg, r). Next, we replace (4.2) by

-1 (0H
F(e,%) = —[ DeH(t +10,x + 50) | (70 +10,x +xo)) :
The proof then proceeds as before. O

Remark 4.1.4 The proof of Theorem 4.1.3 given above is clearly limited to the
case of one independent variable in the implicitly defined function. The case of
one dependent variable and several independent variables can be obtained by re-
placing (4.2) with the appropriate system of first-order partial differential equa-
tions. The system of partial differential equations is solved by applying the exis-
tence theorem for ordinary differential equations (Theorem 4.1.1), with parame-
ters, to each independent variable in turn. For example, if we have the equation
H(x, y, z) = 0 which we are considering near a point (xg, yo, zo) where H is zero
and d H /9z is nonzero (so the implicit function z(x, y) will involve two indepen-
dent variables), then there will be two first-order partial differential equations that
z(x, y) must satisfy:

02 oH [ O0H

SR g0 , 4.

ox ox 0z (4-5)
oH [ o0H

Az, _ 9 geu (4.6)

dy dy 0z

Restricting to a neighborhood of (xg, y0. z0) in which d H/dz is non-vanishing
will enable us to conclude by an appeal to Rolle’s theorem that the function
z(x, y) is uniquely defined, without the hypotheses for the uniqueness of solu-
tions of ordinary differential equations.
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The second equation, (4.6), is solved by solving the first equation, (4.5), with

= yp fixed and with the initial condition z = zg. Then the resulting function
z(x, yo) is used to provide the initial condition for (4.6); the initial value problem
is then solved while treating x as a parameter. This process will produce a solution
of (4.6) in an open set about the point (xg, yo). By carrying out the same process,
but in the other order, we can obtain a solution of (4.5) in an open set about
the same point (xp, yo). Because of the form of the right-hand sides of (4.5) and
(4.6), those two solutions will be consistent and will define just one function that
satisfies both equations.

Finally, the general implicit function theorem for any number of dependent
and independent variables can be proved using Dini’s induction procedure (see
Section 3.2). O

We have seen that the implicit function theorem can be treated, in a sense, as
a corollary of the existence theorem for ordinary differential equations. What we
would like to do next is prove the converse: that we can use the implicit function
theorem to prove the existence of solutions to ordinary differential equations. The
Banach space methods of Section 3.4 will be required for this argument. We recall
the statement of the theorem:

Theorem 4.1.1 If F(t,x), (t,x) € R x R¥, is continuous in the (N + 1)-
dimensional region (to — a, ty + a) x B(xg, r), then there exists a solution x(t)
of

9x _ p t0) = 4.1
ln t,x), x(to) = xg, 4.1)

defined over an interval (tg — h, tg + h).

Proof. For convenience of notation, let us suppose that 75 = 0.

Let By be the space of bounded continuous R” -valued functions on (—a, a),
normed by the supremum of the magnitude of the function. Let 1; be the space
of bounded continuously differentiable R” -valued functions on (—a, a) that also
have a bounded derivative. We norm this space by the sum of the supremum of the
magnitude of the function and the supremum of the magnitude of the derivative
of the function. We define a map F : By — By x R by setting

f[x(t)] = [x'(t) — F(t, x(t)), x(0) — xo].

With this notation, a solution of (4.1) is given by a zero of .

We imbed the problem of solving F[x] = [0, 0] into a larger problem Define
H:[0,1] x By — By x R by setting

H[a. X(t)] = [x’(z) — aF(at, X(t)), X(0) -—xo].
We observe that

H[O, xo] =[O0, 0], 4.7)
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where x¢ in (4.7) represents the constant function. Also, we observe that the
Fréchet derivative of H at [0, xp] is given by X i— X". It follows from the implicit
function theorem for Banach spaces, Theorem 3.4.10, that for all small enough
choices of « there exists an X («, t) such that

D X(at,t) —aF(ar, X(a, 7)) =0, X(c, 0) = xp.
For such an a > 0, we define x () by setting
x(t) = X(a, t/x).

It follows that
1
x'@) = > Di(a,t/a) = é o - Fla@t/a), X(a, t/a)] = F(t, x(t)).

Thus our differential equation is solved, and the theorem is proved. O

4.2 Numerical Homotopy Methods

Suppose we wish to solve a system of nonlinear equations
F(x)=0 (4.8)

where F : R¥ — R" is smooth. Only in very special circumstances will it
be possible to solve (4.8) in closed form; generally, numerical methods must be
employed and an approximate solution thereby obtained. Of course, we would
probably like to apply Newton’s method, but for that we need a reasonable starting
point for the iteration. In case we do not have such a reasonable starting point for
Newton's method, some alternative procedure is needed. One such method is the
homotopy method (also called the continuation or imbedding method).

In the homotopy method, we imbed the problem of interest, (4.8), into a larger
problem of finding the zeros of a function H# : RV*! — RV However, the
function H is to be specially chosen so that the function Fo : R¥Y — R¥ defined
by setting

Fo(x) = H(0, x) 4.9)

is one that we understand well, while the function F in which we are interested is
given by
F(x) = H(l, x).

The plan then is to follow the zeros of H from a starting point (0, xg) € RN+l
with Fo(xg) = O along a curve (z(s), x(s)), 0 < s < 1, for which

H(t(s), x(s)) =0, (4.10)





